NPS ARCHIVE
 1965
 YOCKEY, H.

USE OF MIHROVIC'S MEHOD NN THE ANALYSTS OF A CONTROL SYSTEM WITH TWO GAN. VARIABLE FEEDBACK NONLINEARITIES

HARRY M. YOCKEY

DUDLEY KNOX LIBRARY
NAVA! POSTGRADUATE SCHOOL
MONTEREY CA 23043-5101

6

USE OF MITROVIC'S METHOD IN THE ANALYSIS OF A CONTROT SYSTEM WITH TWO GAIN-VARIABLE GBEDBACK NONLTNTARITLES

$$
\text { 犬 } x+x
$$

Harry M. Yockey


```
\therefore TRG% SXGTMN UTTY THO GATN-VARTABLE
                \becauseMOBNK NONLINEARITIES
                    By
                            Marry M. Yockey
Yiovtenmnt, United States Navy
Sunnjtted in partial fulfillment of
the requjrements for the degree of
    MASTER OR SCTENCR
                            IN
```

BLBOTRICAD E WGTMEPRING

```
*nitce? States Neval Postgraduate School
    *innterey, Colifornia
```

IPS Archive

$$
\begin{aligned}
& 965 \\
& \text { fockey, } \mathrm{H} .
\end{aligned}
$$

This work is accepted as fulfilling
the thosis requirements for the degree of MASTER OE SCIPNOE IN

QEGOTRICAD MNGINEERING
from the

United States Neval Postgraduate School

The basic Mitrovic's method is an effective technique in the analysis and design of linear feedback control systems. Mitrovic's method has been successfully applied to analyze feedback control systems with single nonlinearities. The objective of this work was to employ Mitrovic's method, which permits the variation of two coefficients of a characteristic equation, in the analysis of a control system with two gain-variable nonlinear feedback paths.

After predictions of system performance were made, the predictions were tested by simulating the feedback control system on a Donner Scientific Corporation analog computer, Model 3100. Computer results were analysed in order to support or reject prediction techniques.

Chapter Title Page
I. Use of the Basic Mitrovic's Method 1
Il The Feedback Control System with Acceleration and Velocity Feedback Compensation 7
IIT Mitrovic"s Method Applied to the Control System with Two Gain-Variable Nonlinearities 14
Mitrovic"s Method Applied to the Stable Control System 69
APPENDICES
A Control Systems with Single Nonlinearities 89
B Tables of Mitroyc's equations 108
lable 1. Mierovic Equation Pairs 108
Table 12. $\phi_{k}[\xi]$ functions 110

I-l Control system with single nonlinearity. 2
II-1 Feedback control system block diagram. 8
II-2 Root loci of the Eeedback control system. 9

II-3 Analog Computer Simulation. 12
III-1 The $B_{1}-B_{2}$ plane. 16
III-2 Phase portrait of the $\dot{\theta}$ vs $\ddot{\theta}$ plane, linear system. 20
III-3 Predicted M-point motion on the $B_{1}-B_{2}$ plane. 21
III-4 Fxpanded view of the $B_{1}-B_{2}$ plane. 24
III-5 M-point locations on the $B_{1}-B_{2}$ Flane. 26
III 6 a $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 30
III-6b $\dot{\theta}$ vs $\ddot{\theta}$ trajectorics. 31
III-6c $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 32
III-6d $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 33
II-be $\dot{\theta}$ vi \ddot{G} trajectories. 34
IIT-0并 vs $\ddot{\theta}$ trajectories. 35

III-Y $\dot{\theta}$ vs $\ddot{\theta}$ experimental stability limits. 37
III-8 Experimental stability limits on the $B_{1}-B_{2}$ plane. 39
III-9 Actual M-point motion on the $B_{1}-B_{2}$ plane. 40
III-10a $\dot{\theta}$ vs $\ddot{\theta}$ isoclines for zero displacement. 42
III-l0b $\dot{\theta}$ vs $\ddot{\theta}$ isoclines for a displacement of +10 volts. 43
III-10c $\dot{\theta}$ vs $\ddot{\theta}$ isoclines for a displacement of +20 volts. 44
III-lla $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 46
III-11b $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 47

List of Illustrations (continued)

Figure Title Page
III-Ilc $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 48
III-1ld $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 49
III-1le $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 50
III-IIE $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 51
III-11g $\dot{\theta}$ vs $\ddot{\theta}$ trajectories. 52
III-12 $\dot{\theta}$ vs $\ddot{\theta}$ experimental stable region. 53
III-13a $\dot{\theta}$ vs θ trajectory for a step input of 10.1 volts. 54
III-13b Control system time responses. 55
III-14 $\dot{\theta}$ vs θ trajectory for a step input of 10.2 volts. 56
III-15a $\dot{\theta}$ vs $\ddot{\theta}$ trajectories and stability limits for an initial displacenent of +20 volts. 58
III-15b $\dot{\theta}$ vs $\ddot{\theta}$ trajectories and stability limits for an initial displacement of +30 volts. 59
III-15c $\dot{\theta}$ vs $\ddot{\theta}$ trajectories and stability limits for an initial displacement of +40 volts. 60
III-15d $\dot{\theta}$ vs $\ddot{\theta}$ trajectories and stability limits for an initial displacement of -20 volts. 61
III-16 Experimental unstable limit cycle locus on the $\dot{\theta}$ vs $\ddot{\theta}$ plane. 62
III-17 Limit cycle locus and stability curve on the $B_{1}-B_{2}$ plane. 63
III-18 Unstable limit cycle for reduced feedback gains. 65
II I $-19 \quad \dot{\theta}$ vs $\ddot{\theta}$ trajectory for reduced K_{t}. 66
III-20 $\dot{\theta}$ vs $\ddot{\theta}$ trajectories for increased feedback gains. 67
IV-1 The $B_{1}-B_{2}$ plane. 71
IV-2 Approximate trajectories on the $B_{1}-B_{2}$ plane. 73
IV-3 Average M-point motion on the $B_{1}-B_{2}$ plane. 76

Figure	Title	Page
IV-4	$\dot{\theta} \mathrm{v}$ ($\ddot{\theta}$ phase portrait for 10 volt step input.	78
IV-5	$B_{1}-B_{2}$ plane trajectory for 10 volt step input.	79
IV-6	$\dot{\theta}$ vs $\ddot{\theta}$ phase portrait for 20 volt step input.	80
IV-7	$B_{1}-B_{2}$ plane trajectory for 20 volt step input,	81
IV-8	$\dot{\theta}$ vs $\ddot{\theta}$ phase portrait for 30 volt step input.	82
IV-9	B_{1} vs B_{2} plane trajectory for 30 volt step input.	83
IV-10	$\dot{\theta}$ vs $\ddot{\theta}$ phase portrait for 40 volt step input.	84
IV-11	$B_{1}-B_{2}$ plane trajectory for 40 volt step input.	85
IV-12	$\dot{\theta}$ vs $\ddot{\theta}$ phase portrait for 50 volt step input.	86
IV-13	$B_{1}-B_{2}$ plane trajectory for 50 volt step input.	87
A-1	Control System with Saturation in the Error Channel.	90
A-2	Graphical Solution to Error Channel Saturation.	92
A-3	$\dot{\varepsilon}$ ¢ vs \mathcal{E} phase portrait. Saturation in Error Channel.	94
A-4	Graphical Solution to Error Channel Saturation.	95
A-5	Feedback Control System with Saturation in the Tachometer Feedback Channel.	98
A-6	Graphical Solution for Saturation in Tachometer Feedback Channel.	100
A-7	$\dot{\varepsilon}$ vs \mathcal{E} Phase Portrait. Velocity Channel Feedback Saturation.	102
A-8	Control System with Saturation in Acceleration Feedback Channel.	104
A-9	Graphical Solution for Acceleration Feedback Channel Saturation.	106
A-10	$\dot{\varepsilon}$ vs ε Phase Portrait. Acceleration Feedback Saturation.	107

LIST OF TABLES

Number Title Page
III 1 System Stability Predictions. 28
IV-1 Values of the Damping Factor. 75
IV-2 Tabulated Average M-point Motion. 75

In general, the analysis and design of feedback control systems centers around the solution to an ordinary, linear, differential equation with constant coefficients. Specifically, the application of LaPlace transforms to the differential equation produces a transfer function which is a ratio of the output signal to the input: signal. By proper placement of the poles and zeros of the transfer function, the frequency and/or time response are adjusted to produce results which meet with some set of specifications for the system. This procedure may be followed because the form of the solution to a linear differential equation is unique. The resulting solution is predictable and invariant.

The introduction of a single nonlinear element in a control system produces a nonlinear differential equation where one or more of the coefficients may be variable. There are as many specific solutions to a nonlinear differential equation with variable coefficients as there are values of the coefficients. Therefore, the accurate prediction of system performance is stringently curtailed. The use of describing functions provides an adequate solution to the problem of one nonlinear element within the limitations imposed on the describing function itself.

Consider a feedback control system with a transfer function $G(j \omega)$ and a nonlinear device which may be represented by a describing function $G_{D}(j \omega)$ both in the forward path as shown in Fig. I-1a. Then the transfer function for this system is:

$$
\begin{equation*}
\frac{\theta(s)}{\theta_{l}(s)}=\frac{G(j \omega) G_{D}(j \omega)}{1+G(j \omega) G_{D}(j \omega)} \tag{I-1}
\end{equation*}
$$

(a) Feedback control system block diagram.

(b) Gain-phase plane graphical solution,
\square
Figure I:1. Control syate with ingle nonlinearity.

from which the characteristic equation may be found by setting the denominator of Eq. (I-1) equal to zero. Thus,

$$
\begin{equation*}
1+G(j \omega) G_{D}(j \omega)=0 . \tag{I-2}
\end{equation*}
$$

The solution to Eq. (I-2) is:

$$
\begin{equation*}
G(j \omega)=-\frac{1}{G_{D}(j \omega)} \tag{I-3}
\end{equation*}
$$

Where $G_{d}(j \omega)$ is a gain nonlinearity only and has no phase angle associated with it - which is the case for such nonlinearities as saturation, ideal relay, dead zone, and relay with dead zone - the problem is conveniently solved on a gain-phase plot. This graphical solution is illustrated in Fig. I-lb. The system operates in a limit cycle at the intersection of the two curves. This is shown as point "A" in the figure. A root-locus plot may be used to arrive at the same result providing the single nonlinear gain is not a function of frequency.

When two nonlinear devices appear in a control system, only a family of gain-phase plots or root-loci plots can provide a complete solution to the problem. Thus the problems of analysis and design become complex and curnbersome. Analysis would be convenient if:

1. Some method of simultaneously looking at two nonlinear gains were available, and,
2. Some relationship between these two nonlinear gains could be found.

Mitrovic's method [1] provides the answer to the first requirement for control systems in which each nonlinear gain appears in a different coefficient of the characteristic equation. The purpose of this thesis is to fulfill the second requirement for a particular feedback control

The mathematical derivation of Mitrovic's method is based on a theorum by Cauchy and will not be pursued here. The algebraic manipulations give some insight into Mitrovic's method and will serve to provide the reader with some feeling for the method.

Consider a feedback control system with a transfer function

$$
\begin{equation*}
G(s)=\frac{K}{S\left(S+p_{1}\right)\left(S+p_{2}\right)} \tag{I-4}
\end{equation*}
$$

The characteristic equation for this system is

$$
\begin{equation*}
S^{3}+\left(p_{1}+p_{2}\right) S^{2}+p_{1} p_{2} S+K=0 \tag{I-5}
\end{equation*}
$$

which is of the form

$$
\begin{equation*}
A_{3} s^{3}+A_{2} S^{2}+A_{1} s+A_{0}=0 \tag{I-6}
\end{equation*}
$$

If the coefficients to be varied are A_{0} and A_{1} then the characterisetic equation may be rewritten as

$$
\begin{equation*}
A_{3} s^{3}+A_{2} s^{2}+B_{1} s+B_{0}=0, \tag{I-7}
\end{equation*}
$$

where the values of s have the general form of

$$
\begin{equation*}
S=-\xi \omega_{n}+j \omega_{n} \sqrt{1-\xi^{2}} \tag{I-8}
\end{equation*}
$$

and lie in the second quadrant of the $s-p l a n e$. Then the values of s which must be substituted in Eq. (I-7) are:

$$
\begin{align*}
& S^{2}=\omega_{n}^{2}\left(2 \xi^{2}-1\right)-j 2 \xi \omega_{n}^{2} \sqrt{1-\xi^{2}} \tag{I-9}\\
& S^{3}=\xi \omega_{n}^{3}\left(3-4 \xi^{2}\right)+j \omega_{n}^{3}\left(4 \xi^{2}-1\right) \sqrt{1-\xi^{2}} .
\end{align*}
$$

Substituting the values of s from Eqs. ($\mathrm{I}-8$) and (I-9) in Eq. (I-7) and requiring the real and imaginary parts to go to zero independently

$$
\begin{gather*}
A_{3} \omega_{n}^{3}+A_{2} \omega_{n}^{2}\left(2 \xi^{2}-1\right)-B_{1} \xi \omega_{n}+B_{0}=0 \tag{I-10}\\
j \omega_{n} \sqrt{1-\xi^{2}}\left[-A_{3} \omega_{n}^{3}\left(1-4 \xi^{2}\right)-A_{2} 2 \xi \omega_{n}+B_{1}\right]=0 . \tag{I-11}
\end{gather*}
$$

The solution of these two simultaneous equations, after first dividing Eq. (I-11) by $j \omega_{n} \sqrt{1-\xi^{2}}$ becomes:

$$
\begin{align*}
& B_{0}=-\left[A_{3} \omega_{n}^{3}(2 \xi)-(1) A_{2} \omega_{n}^{2}\right] \tag{I-12}\\
& B_{1}=\left[A_{3} \omega_{n}^{2}\left(1-4 \xi^{2}\right)+A_{2} \omega_{n}(2 \xi)\right]
\end{align*}
$$

By plotting the results of Eq. $(I-12)$ on a $B_{0}-B_{1}$ coordinate system for constant \mathcal{G} lines as ω_{n} is varied, it is possible to map radial lines from the $s-p l a n e$ onto the $B_{0}-B_{1} p l a n e$. Thus the result of simultaneously varying two coefficients of the characteristic equation is plainly evident from a single plot. When the $\xi=0$ line ($s=j \boldsymbol{\omega}$ in the $s-p l a n e$) is selected as radial line to be mapped, the stability curve is plotted on the $B_{0}-B_{1}$ plane.

Mitrovic's method may be expanded to solve any order characteristic equation for any two coefficients. The generalized solutions for Mitrovic's equation pairs are listed in Appendix B, Table I. In a generalized solution, certain functions of ξ only $\left[\phi_{k}(\xi)\right]$ are repeated, such as 2ξ in Eqs. (I-12). A listing of these functions of ξ is made in Appendix B, Table II.

The analysis of feedback control systems with single gain variable nonlinearities using Mitrovic's method is straight forward and produces results consistent with root-locus, describing function, and analog computer techniques. Since the author had no previous experience in

either Mitrovic's method or analysis of feedback control systoms with two gain variable nonlinearities, three control systems were selected and analyzed before study on the two gain-variable nonlinear problem was begun. The results of the study of these three systems appear in Appendix A and corroborate the results obtained by IT P. L. WILSON, USN. [6].

CHAPTER II

THE FEEDBACK CONTROL SYSTEM WITH ACCELERATION AND VELOCITY FEEDBACK COMPENSATTON

A block diagram of the system to be studied in this thesis is shown in Fig. II-1. The root locus of the transfer function for the system, without acceleration or velocity feedback paths, is plotted on the s-plane in Fig. II-2a. For a gain of 60 , the system has complex roots in the right half plane and is unstable. The addition of velocity and acceleration feedback compensation, when saturation is not present, produces a characteristic equation which is

$$
\begin{equation*}
s^{3}+63 s^{2}+62 s+60=0 \tag{II-1}
\end{equation*}
$$

when K_{a} and K_{t} are both unity.
Eq. (II-1) may be factored to give

$$
\begin{equation*}
(s+62.016)\left(s^{2}+0.984 s+0.984\right)=0 \tag{II-2}
\end{equation*}
$$

Thus, the system has been compensated to approximate a second order system with a damping ratio, ξ, equal to 0.5 and a natural frequency, ω_{n}, equal to 0.984 . The root locations for the compensated system are shown in Fig. II-2b. In response to a step input, the system would have a maximum overshoot, $M_{p t}$, of 1.15 and a settling time of about four seconds.

The addition of two nonlinear elements produces a characteristic equation with two nonlinear coefficients. This equation is:

$$
\begin{equation*}
s^{3}+\left(3+60 N_{2} K_{a}\right) s^{2}+\left(2+60 N_{1} K_{t}\right) s+60=0, \tag{II-3}
\end{equation*}
$$

120

1^{14}

where N_{1} and N_{2} represent the instantaneous gains of the velocity and acceleration saturating amplifiers, respectively. The instantaneous value of N_{1} and N_{2} may be either unity or a magnitude determined by Eq. (II-4).

$$
\begin{align*}
& N_{1}=\frac{E_{\text {sat }}}{K_{t}(\dot{\theta})} \tag{II-4}\\
& N_{2}=\frac{E_{\text {sat }}}{\mathrm{K}_{\mathrm{a}}(\ddot{\theta})}
\end{align*}
$$

The root locations for Eq. (II-3) vary with time as $\dot{\theta}$ and $\ddot{\theta}$ vary. This is evident if the block diagram is first reduced by including unity feedback.

Then,

$$
\begin{equation*}
G_{2}(s)=\frac{60}{s^{3}+3 s^{2}+2 s+60} \tag{II-5}
\end{equation*}
$$

and the feedback path is $H(s)$ where

$$
\begin{equation*}
H(s)=N_{2} K_{a} s^{2}+N_{1} K_{t} s . \tag{II-6}
\end{equation*}
$$

Therefore, $G_{2}(s) H(s)$ is found from Eqs. (II-5) and (II-6) as:

$$
\begin{equation*}
G_{2}(s) H(s)=\frac{60 N_{2} K_{a} s\left(s+\frac{N_{1} K_{t}}{N_{2} K_{a}}\right)}{s^{3}+3 S^{2}+2 s+60} \tag{II-7}
\end{equation*}
$$

The location of the system zero at $S=-\frac{N_{1} K_{t}}{N_{2} K_{a}}$ will fluctuate during any given cycle of the system and the gain, given by $60 \mathrm{~N}_{2} \mathrm{~K}_{\mathrm{a}}$, will also fluctuate. The difficulties encountered in further root-locus analysis are obvious.

However, there is one useful piece of information which may be gleaned from the root-locus plot. One root of the characteristic equation will
almays lie between $5<s<62.016$. Therefore, even the nonlinear system will always anproximate a second order system since the other two roots will be dominant.

The systom of fig. IT-] was simulated on a Donner Scientific Corporation Analog Computer, Model 3100. The analog computer simulation is shown in Fig. 15-3. the $\dot{\theta}$ signal is picked off before the final integration step. The simulation for $\ddot{\theta}$ was accomplished after $\ddot{\theta}$ was derived as shown in Eqs. (TI-8).

$$
\begin{align*}
\frac{\dot{\theta}(s) / 10}{Y(s)} & =\frac{2}{(s+2)} \\
s \dot{\theta}(s) / 10 & =2 Y(s)-2 \dot{\theta}(s) / 10 \tag{II-8}\\
\ddot{\theta}(s) / 10 & =2 Y(s)-2 \dot{\theta}(s) / 10
\end{align*}
$$

By using the above method for simulating $\ddot{\theta}$, differentiating circuits, Which tend to saturate with steep wavefronts, were avoided. Much of the Work involved the use of initial conditions. The initial condition for $\dot{\theta}$ was set Eirst. Then the initial condition of the integrating amplifier, wose outrut is the signal marked "y" in Fig. II-3, was adjusted sn that the smmjme nmblifier for $\ddot{\theta}$ had the desired initial value of $\ddot{\theta}$ as its nutnut. Since this system does not represent any particular physical system, the terms θ, and its derivatives, inputs, and errar signals will be used with units in volts.

The experimental procedure to be followed in this thesis will be to look at the characteristic equation using Mitrovic's method in conjunction with the $3_{2}-3$, plane. After predictions about system perfomance are made, the mredictions will be tested using the analog computer

simulntion. The results of computer runs will be analyzed and compared to the predictions which were made. Finally, an attempt will be made to expand any successful methods of predicting performance for application to other systems with two nonlinear elements.

ITROUIC'S METHOD APPLIED TO THE CONTROL SYSTEM

WITH TWO GAIN-VARTABIE NONI.INFARITIES

For the feedback control system described in Chanter II, the characteristic equation may be nut in the form:

$$
\begin{equation*}
A_{3} s^{3}+B_{2} s^{2}+B_{1} s+A_{0}=0 . \tag{III-1}
\end{equation*}
$$

The rporoprizte Hirrovic's equation pair from Appendix 13 is:

$$
\begin{align*}
& B_{1}=-\frac{1}{\omega_{n}}\left[A_{0} \phi_{2}(\xi)+A_{3} \omega_{n}^{3} \phi(\xi)\right] \tag{III-2}\\
& B_{2}=\frac{1}{\omega_{n}^{2}}\left[-A_{0} \phi_{1}(\xi)+A_{3} \omega_{n}^{3} \phi_{2}(\xi)\right]
\end{align*}
$$

From ins. (III-2) it is evident that the parametric equations for B_{3} and 3_{2} are not functions of the nonlinearities but have constant coefficients which are $A_{3}=1$ and $A_{0}=60$. Substituting these constants and the appropriate $:(\xi)$ functions from Appendix B in Eqs. (III-2) results in Pas. (3Y-3).

$$
\begin{align*}
& B_{1}=\frac{60(2 \xi)}{\omega_{n}}+\omega_{n}^{2} \tag{III-3}\\
& B_{2}=\frac{60}{\omega_{n}^{2}}+\omega_{n}(2 \xi)
\end{align*}
$$

To study this system for stability only, a mapping of the ξ equals zero line of the s-plane into the $B_{1}-B_{2}$ plane is desired. When ξ equals zero,

$$
\begin{equation*}
i_{1}=\omega_{n}^{2} \tag{III-4a}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{2}=\frac{60}{\omega_{n}^{2}} . \tag{-4b}
\end{equation*}
$$

ω_{n}^{2} can be eliminated from eqs. (III-4). Thus, the parametric equation for stability becomes
en

$$
\begin{aligned}
& \square \\
& \text { ? }
\end{aligned}
$$

$$
\begin{aligned}
& -\sqrt{2} \\
& \text { - M- } \\
& \text { (1) } \\
& \text { - }+4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 皆 } \\
& \begin{array}{l}
4-1+1 \\
4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1+2+2+2+2 \\
& \begin{array}{l}
\text { - } \quad \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
B_{1}^{13} 2=60 \tag{III-5}
\end{equation*}
$$

When values of B_{1} and B_{2} which satisfy Eq. (III-5) are plotted on the $B_{1}-B_{2}$ plane, a grapical solution for the stability curve is obtained. This is shown in Fig. III-1. Also shown in Fig. III-1 is the curve obtained for ξ equal to 0.5 .

The values of B_{1} and B_{2} from the characteristic equation are given by Eqs. (ITI-6).

$$
\begin{align*}
& B_{1}=2+60 N_{1} K_{t} \tag{III-6}\\
& B_{2}=3+60 N_{2} K_{a}
\end{align*}
$$

A. linerx mpint may be defined as a point on the $B_{1}-B_{2}$ plane when the magnitude of the monlinear gains, H_{3} and N_{2} in Eqs. (III-6), are unity, i.e., when the system is linear.

With k_{n} and k_{t} both equal to one, the linear M-point, from Eqs. (III.6), is at 3_{1} equal to 62 and B_{2} equal to 63. There are minimum yohes for B_{1} and B_{2} which occur when $N_{1} K_{t}$ or $N_{2} K_{a}$ become zero. These minimum values pro iven by Eqs. (III-6) as $B_{1}=2$ and $B_{2}=3$. These minimum regions are lined out on the $B_{1}-B_{2}$ plane in Fig. IIt-1. Since N_{1} and N_{2} can have maximum values of unity, then $\mathrm{B}_{1}=62$ and $B_{2}=53$ define an upper linit for M-point movement. These boundaries are shom as dashed lines in Fig. III-1. Therefore, movement of the M-point is completely bounded in a region where $2=B_{1}=62$ and $3=B_{2}=63$.

ITMIT CXCIES. There are no Eimit cycles for this system by the reasons Which follow. Egs. (III-6) may be rewritten as:

$$
\begin{align*}
& B_{1}=2+\frac{60\left|E_{\text {sat }}\right|}{|\dot{\theta}|} \tag{III-7}\\
& B_{2}=3+\frac{60\left|E_{\text {sat }}\right|}{|\dot{\theta}|}
\end{align*}
$$

If the mopoint moves into the unstable region for a significant period of time, the oscillations in the system will tend to gro\%. This growth restles in laper peak magnitudes of acceleration, $\ddot{\theta}$, and velocity, $\dot{\theta}$. As the magnitudes of $\dot{\theta}$ and $\ddot{\theta}$ increase, B_{1} and B_{2} become maller, acecrimy th ans. (IIL-7), winh drives the IA-point farther into the watrble reaion and the nenk magnitudes of the oscillations increase even nome. Conversely, if the M-point does not move into the unstable reofon, the monk magnitules of any oscillations would decrease and the M print would move in the direction of the linear M-point. In theory a limit cycle could exist. However, it would be an unstable limit cycle and the sijghest devintion from such a limit cycle would create either a stable or an unstable systcm. Therefore, in the actual system no limit cycles con exist ant mone were found.

Monat Then moint does not move in a linear system. Therefore, morntion of the systen is defined by the M-point location, two roots are snecified $\left(s=-\xi \omega_{n} \pm j \omega_{n} \sqrt{1-\xi^{2}}\right.$), the third root can be found, and system perfommance can be predicted. The M-point location on the B1. B2 Blane can be adjusted to give any desired value of ξ and ω_{n} by adjusting the accelorntion and velocity feedback gains.

TE only the techonetor feedback channcl saturates, M-point motion is: 3 ons, horionata! tine since B_{1} can vary but B_{2} is fixed by the value of acceleration fectback gain. Conversely, if only the acceleration fochbock channel seturates, movement of the M-point would be along
a vertical path.
When both feedback paths saturate, the M-point can move anywhere in the ?, B2 blane within the boundaries previously defined. The esnct nature of the point motion can be predicted only if the exact $\dot{\theta} v \dot{\theta}$ ohase portrait can be prediceed. However, a qualitative doscription of point motion can be made using only a few approximations.

Consider the transfer function of the linear system:

$$
\frac{\theta(s)}{\theta_{i}(s)}=\frac{60}{s^{3}+63 s^{2}+62 s+60}
$$

which may be rearranged as

$$
\begin{equation*}
\theta(s)\left(s^{3}+63 s^{2}+62 s+60\right)=60 \theta_{i}(s) \tag{III-8}
\end{equation*}
$$

An approsimation of \therefore (ITt-8) is made by factoring out $s+62.016$ from the left sise of the equation and discarding this tem. Then, Eq.
(IIT-3) becomes:

$$
\begin{equation*}
\theta(s)\left(s^{2}+.984 s+.984\right) \cong 60 \theta_{\imath}(s) . \tag{III-9}
\end{equation*}
$$

For zero input to the system, Eg. (III-9) becomes

$$
\begin{equation*}
\theta(s)\left(s^{2}+.984 s+.984\right) \cong 0 \tag{III-10}
\end{equation*}
$$

Dr. (ITI-IC) may be changer to an approximate differential equation for the system rigis? is:

$$
\begin{equation*}
\ddot{\theta}+\dot{\theta}+\theta \cong 0 \tag{III-11}
\end{equation*}
$$

Within the tolerances of the approximations made, Eq. (III-11) will govern the linear system. If the system is driven by initial conditions, then, at $t=0+$ Eq. (III-11) must be satisfied. Also, at $t=0+$,
θ

inas not had time to chance fromt tts initial value. If $\theta(0)$ is zero, ther,

$$
\begin{equation*}
\ddot{\theta} \cong-\dot{\theta} \quad \text { for } 0<t<0 \tag{III-12}
\end{equation*}
$$

To test the validity of the assumptions which have been made, the linear system was checked out on the analog computer. Fig. III-2 is a phase portrait of the $\dot{\theta}$ vs $\ddot{\theta}$ plane. In the brief time when $0<t<0+$, the approximation given by En. (IT-12) applies. This time period is indicated by the 24 single trace lines in Fig. IIT-2. Regardless of the initial value of acceleration, then $\dot{\theta}(0)=35$ volts, $\dot{\theta}(0+)=-35$ volts. After $t=0+$, each of the 12 rums for mositive values of $\dot{\theta}(0)$ have essentially the same phase portrait. Similarly, each of the 12 runs for negative values of $\dot{\theta}(0)$ have the same phase portrait after $t=0+$. (It is interesting to note here that, if the s^{3} term were eliminated from Eq. (III-8), no significant difference in the ensuing Eqs. (III-10, 11, and 12) would have resulted. Use of this fact is made at a later point in this cha*ter.)

Consider this system operating in an underdamped condition. The system is then oscillatory. Jf the velocity has a sinusoidal waveshape, the accelexation hes a sinusoidal waveshape which will lead the velocity waveshape by 90 deqrees. When the velocity is at a positive or negative maximum, the acceleration will be zero.

If the criteria developed through the aid of the assumptions in the preceding paragraphs are applied to the $B_{1}-B_{2}$ plane, a qualitative description of M-noint motion can be made. Assume the analysis of Moint motion is begun when the velocity passes through a maximum value. The accelerntion is, therefore, zero and the acceleration feedback channel is Iinear. Figure ttI. 3 shows the location of this point as M_{1}. When

the mamitude of the acoloretion becones greater than the saturation voltage the magnitude of B_{2} decreases according to Rq. (III-7) and the M moint moves downerd as show by the arrow from M_{1} in Fig. III-3. This motion cold continue until the velocity begins to change its magnitude, say at M_{2}. When this happens, the velocity feedback amplifier saturates to a lesser dectee and B_{1} begins to increase. The M-point motion is then shown by the arrow from M_{2}. A short time later the velncity channel goes out of saturation and the acteleration channel reaches a maximum degree of saturation. The M-point has then moved to M_{3}. As the velocity channel is driven into saturation in the opposite direction and the acceleration channel becomes saturated to a lesser degree, tho M-point moves away from \mathbb{M}_{3} in the direction indicated. AssumIng a damped system, the m-point cou!d then pass through M_{4} and arrive at M_{5} IFy at M_{5}, the acceleration chancl remains unsaturated for an appreciable amount of time, the M-point would move in the indicated direction as the magnitude of the velocity signal decreases. At M6 the acceleration channel saturates again and the entire process is repeated through M_{7} to M_{8}. At M_{8} the velocity channel remains unsaturated as the acceleration magnitude decreases to M_{9}. This process continues until the linear M-point is reached, after which neither channel saturates. The above discussion has been for a theoretical M-point motion. Before taking up actual M point movement, the theoretical aspects of stability will be discussed.

Theoretically, if the system begins operation in the stable region of the B_{1}. $-B_{2}$ plane, there is some damping ratio, which will

c-rie tio fyotem to hrve successjvely smeller peak signals at the marimum of each comrlote cyole or half-cycle. Therefore a stable system bould remain stshle mid mojnt motion would follow a trajectory similar to that show in fio. Iti-3. Conversely, if the system begins operation in the urgtrble region then a growth in the peak magnitudes of each succoeding cycle occurs and the system can only remain urstable. Howevex, Irom fig. ITI-4, a set of initial conditions can be imposed on the system so as to place the M-point in the unstable region, say at Mo. An unstable system may be cyelic as well as unstable. For a cyclic system druven with initjal conditions, $\dot{\theta}$ and $\ddot{\theta}$ will pass through zero. As either ote tasses fhrough zero the nonifnearity imposed cn the system by sathration is ramevet. An the $B_{1}-B_{2}$ plane, if the value of either
 eovs ixpoint in cuestion must lie in the stable regiom. (My). Addirionally, at any instant when B is greater than $20(\hat{\theta}<10$ volts) or I? is grentew than $30(\dot{\theta}<6.66$ volts) the instantaneous M-point must lie inside the stathe region (ilz).

Pherefore, fry the non-lirear syctem, the stability curve is not an in* iolate boumilamy? It must be mossible to start in the unstable region sind pass into the stable region. mwo guestions then arise.

1. Can a system be started in the stable region and become unstable?
2. Can a system be initially unstable and go stable?

Fguation (iI-10) was obtained by assuming that the system at hand was essentially a second order system. As previously stated, the same result would have been obtained if the s^{3} factor had been dropped from LT, (IT-8). Fquation (TIT-13) resulus wher the s factor is distegarded bus the non-1 inear coefficients are retained.
(nnen

$$
\begin{equation*}
\theta(s)\left[\left(3+60 N_{2} K_{a}\right) s^{2}+\left(2+60 N_{1} K_{t}\right) s+60\right] \cong 0 \tag{III-13}
\end{equation*}
$$

Thus, the nonlinear differential equation is approximated by:

$$
\begin{equation*}
\left(3+60 N_{2} K_{a}\right) \ddot{\theta}+\left(2+60 N_{1} K_{t}\right) \dot{\theta}+60 \theta \cong 0 \tag{1I1-14}
\end{equation*}
$$

To move the M-point to a desired location as a starting point a initial conditions are imposed on $\dot{\theta}$ and $\ddot{\theta}$ wile $\theta(0)=0$. Thus, Eq. (111-14) may be remotten rim the values of the nominere gains inserted and for the time period $n \lll 0+$ as,

$$
\begin{equation*}
\left(3+\frac{180}{|\ddot{\theta}|}\right) \ddot{\theta}+\left(2+\frac{180}{|\dot{\theta}|}\right) \dot{\theta} \cong 0 \tag{IIT-15}
\end{equation*}
$$

for $E_{\text {sat }}=+3$ volts in each channel.
consider initial conditions of $\dot{\theta}(0)=+30$ volts and $\ddot{\theta}(0)=+$
10 volts. This condition places the M-point at Mo in fig. III-5. If Er. (III-15) is rearranged as Eq. (III-16) and solved for $\ddot{\theta}$ when $\dot{\theta}=+30$ volts then, $\ddot{\theta}=-14 n$ volts and B_{2}, the coefficient for $\ddot{\theta}$, will be at 4.29 shown as M_{2}.

$$
\begin{equation*}
\ddot{\theta}=-\frac{2 \dot{\theta}(0)}{3}-60[\operatorname{sign} \dot{\theta}(0)+\operatorname{sign} \ddot{\theta}(0)] \tag{III-16}
\end{equation*}
$$

In order for $\ddot{\theta}(0 r)$ to arrive at -140 volts, it must pass through zero. Therefore, M-point motion would be through M_{1} to M_{2} and the system would be driven immediately into the unstable region.

Consider the same Mo point but with $\dot{\theta}(0)=-30$ voles. Then the solution to \quad (II I-16) is $\ddot{\theta}=+20$ volts and the M-point of $t=0+$ would be driven to M_{3} without passing through M_{1}.

If the system is started at M_{10} by having $\dot{\theta}(0)=+10$ volts and $\ddot{\theta}(0)=+$ on volts, where would the M-point be at $t=0+$? Again, Eq.

(111 16) is solvet for $\ddot{\theta}$ whe solution is $\ddot{\theta}=-126 \mathrm{~N}=$ ant therefore. $B_{2}=4.43$. The M-point would move to M_{12} passing through M_{11}. $\operatorname{tar} \dot{\theta}(0)=-10$ votts and $\ddot{\theta}(1)=$ tro valts, then $\ddot{\theta}(0+3)$ would $b e+6.1$ volts $\mathbb{B}_{2}=307$. This sequence drives the M-point to M_{13} withow passing through MI.

Although the above discussion is based on approximations, some idea of inftal prome movemort has been obtained. When imitral conditions are imposed on $\dot{\theta}$ and $\ddot{\theta}$ so that they both have the same sien, the system apparently would be hit hardex than if $\dot{\theta}$ and $\ddot{\theta}$ were of opposite signo Thas, the question of stability would hinge, in part, on the question of the sign of the initial conditions imposed.

When En. (111-16) is solved for $\ddot{\theta}$ under varying initial conditions for $\dot{\theta}$ and $\ddot{\theta}$. lable In- results. In lieu of all the approximations which have heen made. Table III-1 can not be regarded as an exact prediction of system stability. It does indicate the type of initial condition settings wich would tend to make the system stable, marginally stable, or completely unstable. At this point it is concluded that experimental tests mast be conducted to determine stability limits for this system. To investigate stability, the system was driven with wariows initial conditions. The starting noint on the $B_{1}-B_{2}$ plane is defined by the magnitudes of the $\dot{\theta}$ and $\ddot{\theta}$ initial conditions. The $\dot{\theta}$ vs $\ddot{\theta}$ phase Diane was selected as the appropriate method of recording data because of the tikect correlation between this phase plane and the $B_{1}-\mathbb{B}_{2}$ plane.

After conducting several computer runs, it became obvious that some regions of the $\dot{\theta}$ s $\ddot{\theta}$ plane rould produce stable runs and some regions Would rooduce anstable system. Tho dellneate the stable tegiom, the

TABLE III-I

$\dot{\theta}(0)$	$\ddot{\theta}(0)$	$B_{1}(0)$	$\mathrm{B}_{2}(0)$	Initially: Stable (S) Unstable (U)	$\ddot{\theta}(0+)$	$\mathrm{B}_{2}(0+$)	Predicted: Stable (S) Unstable (U) Marginal (S/U)
+15	+30	14	9	S	-130	4.38	S/U
$+15$	$+60$	14	6	S	- -130	4.38	S / U
$+15$	+90	14	5.	S	-130	4.38	S/U
$+15$	-30	14	9	${ }_{8} \mathrm{~S}$	$-10^{\text {t }}$	21.00	S
$+15$	-60	14	6	S	- 10	21.00	S
$\because+15$	-90	14	5	S	- 10	21.00	S
-15	$+30$	14	9	S	$+10$	21.00	S
-15	$+60$	14	6	S	+ 10	21.00	S
-15	$+90$	14	5	5	+10	21.00	S
-15	-30	14.	9	S	$+130$. 4.38	S/U
-15	-60	If	6	S	+130	$\therefore 4.38$	S/U
-15	-90	14	5	S	$+130$	4.38	S/U
$+30$	$+30$	9	9	S	-140	4.29	U
+30	$+60$	9	6	U	-140	4.29	U.
+30	+90	9	5	U	-140	4.29	U
$+30$	-30	9	'9	S	- 20	12.00	S
+30	-60	9	6	? U	- 20	12.00	S
$+30$	-90	9	5	U	- 20	12.00	S
-30	+30	9	9	S	+ 20	12.00	S
-30	+60	9	6	U	$+20$	12.00	S
-30	$+90$	9	5	U	+ 20	12.00	S
-30	+30	9	9.	S	$+140$	4.29	U
-30	-60	9	6	U	$+1140$	4.29	U
-30	-90	9	5	U	$+140$	4.29	U

$\dot{\theta}$ ü $\ddot{\theta}$ गhne nlane was searched until a stable run resulted from one inftial condition but, an unstable run resulted from an initial condition disnlaced in small distance from the origimal starting poirt. Figures IIIba thourgh IIJ-og are a sampling of these type runs. When the locus of all stable starting points is dram, the $\dot{\theta}$ vs $\ddot{\theta} \quad$ phase plane is divided into a stable region and an unstable region. This is shown in Fig. ItI7. For all these runs, θ (0) equals zero.

25-1.

Ware flt 7 comfima toe jo dea the stability depends on the signs of doe infin conditions as well as the magnitudes. When the locus of stable mas is plotter on the $B_{1}-B_{2}$ plane, as in Figure III-8, two orimeral dipiline lines result. The first, shown as a dashed line, is for initial conditions of $\dot{\theta}$ and $\hat{\theta}$ of opposite signs. The second fiviting line cosults from $\dot{\theta}$ and $\ddot{\theta}$ infill conditions of the same sign.
the funfitative prediction of M-point motion is confirmed, in part, When the runs of Fig. Intone are plotted on the $B_{1}-B_{2}$ plane, as in
 criation a mane motion.

Mags $\dot{\theta} \ddot{\theta}$ trajectory can be predicted, stability can not be produce. To assist in predicting the $\dot{\theta}$ vs $\ddot{\theta}$ trajectory, isocline then ry seems to be the only available method. The differential equation for this control system is rewritten as:

$$
\begin{equation*}
\ddot{\theta}+B_{2} \ddot{\theta}+B_{1} \dot{\theta}+60 \theta=0 \tag{III-17}
\end{equation*}
$$

S1:20

$$
\begin{equation*}
\frac{d \ddot{\theta}}{d t}=\ddot{\theta} \tag{III-18}
\end{equation*}
$$

ont,

$$
\begin{equation*}
\frac{d \dot{\theta}}{d t}=\ddot{\theta} \tag{III-19}
\end{equation*}
$$

than substituting 7 F . (111-18 and 19) in Eq. (IIT-17) and rearranging wives

$$
\begin{equation*}
\frac{d \ddot{\theta}}{d t}=-B_{2} \ddot{\theta}-B_{1} \dot{\theta}-60 \theta \tag{III-20}
\end{equation*}
$$

新

－1．		414					，	［1\％．														
H5		$1{ }^{15}$	112		相相	．	\＃		［t											Tid		
			相的		－			th								器						
			v：	1\％	疗			14 un			1							0		1\％		
15		$1{ }^{1}$	u		相林			c^{2}	1									\bigcirc				
	苟	7	Σ																			
	＋+1	11	4	迷 1	H		\＃	連										10				
，	＋	－古相			－		其相	相 4										\checkmark				
		相梏						标标								桭						
		样地						$1{ }^{1}$										$+$				
	林梅椥	垶	\＃－w					10														
		标	－																			
1		＋	堿标迷					9		－					\％							
－			－		－${ }^{\text {a }}$			W										\checkmark				
			3					\＃？														
	W相持		（D）			－						－		$1-$								
	Ft				析口109	，												\％				
	＋				杜枵	＋		0				H：										
	－		持 + ＋	，		相		180		$1{ }^{+1}$	F	\＃\＃\＃										
						\％\square^{+}	（				－		$1+2$					0				
			0	\％		－		$1{ }^{1}$	1 ${ }^{+1}$			\＃$\#$ \＃						Hm				
		－$+1{ }^{\text {a }}$	－0		－－${ }^{\text {2 }}$	\％	－	13	根		\％											
		－	－0		＋15				＋	t	校，	＋	\＃					－9		H1：		－
W	$1+1$	据	＋＋\％	＋		䍒	共有				1		－							Fint		
相				－		－\％		－				＋才）	H	1－								
	甠域相	＋		－	－－	衰	－＋＋				－	－										
			相相号		z			4		＋												
	\％${ }^{\text {a }}$		3		0	，																
			3		0			3					\％							0		
					3														7			
	，		U		¢			－${ }^{3}$														
			0		${ }^{2}$	，		淮 $¢$				1		1								
		蒔	5	\％		π	－${ }^{+1}$	－	＋20			林 ${ }^{\text {\＃}}$		1					8			
		，	3	Ht＋				∞												∞		
						－	－	H 5				拫护							H			
		＋		析标		泩年地	$18+1$	莳䓅				标捁＊	1							\pm		
		开桠				］	T ${ }_{\text {\％}}$	？			17f	W］										
									\cdots			地										
		枯过		洏	1	－								－	相					－	12	
－		1		14		－																
																				H		
	7	－＋				相掛	法沶					淮持								－	－	
	+10	桂				\square	7－		－			\square								－		
									，			\％								\square		
					可	掯														간		
				聿								8啦		1						\cdots		
																		\underline{N}		\cdots		
		椒		5		1 振	－	4												\bigcirc	时	
	$\frac{w}{2}$	4		＋ 5			－													\pm		
	\％															T				\cdots		
																				\square		
							H．	THE												\pm		
		蛙挂		－			14					，	1							${ }_{4}^{4}$		
	$\frac{1}{0}$		T	1																		
																				O		
		－				杜棫相														－		
	［ \＃	法				侣	－		Ft			\＃＋1	＋${ }^{1}$					\％				
																					\#	
	标标第					据振			H			\＃	14								貄	
												材相	\＃＋							－	H	，
																				H	4	
													如共怙							（	H1	
				－＋\％																		
								T												${ }^{\infty}$	＋	
																		，		M	，	
							－													1	t	
	－		－	－		\cdots											＋					
	－	＋	＋	＋	＋	1－atan	＋	＋	＋	＋	．	Hemen	\％	＋			1 ＋	＋		＋		
S		c	\bullet					39														

Fix in e one $\dot{\theta} \quad \ddot{\theta}$ phase mine is defied as W, then

$$
\begin{equation*}
N \triangleq \frac{d \ddot{\theta}}{d \dot{\theta}} \tag{III-21}
\end{equation*}
$$

When the left side of Eq. (IlI-20) is divided by $d \dot{\theta} / d t$ and the right side by $\ddot{\theta}$, E-. (It 22) results.

$$
\begin{equation*}
\frac{d \ddot{\theta} / d t}{d \dot{\theta} / d t}=-\frac{B_{2} \ddot{\theta}+B_{1} \dot{\theta}+60 \theta}{\ddot{\theta}} \tag{111-22}
\end{equation*}
$$

Eliminating de ernie the left side of Eq. (III-22) and replacing $d \ddot{\boldsymbol{\theta}} / \mathrm{d} \dot{\boldsymbol{\theta}}$ by the stope, n, produces the desired equation for the isocline in the $\dot{\theta}$ vs $\ddot{\theta}$ phase plane. When the nonlinear factors, B_{1} and \mathbb{E}_{2}, are substituted in the isocline equation, it becomes:

$$
\begin{equation*}
N=\frac{-\left(3+\frac{180}{181}\right) \ddot{\theta}-\left(2+\frac{180}{101}\right) \dot{\theta}-60 \theta}{\ddot{\theta}} . \tag{111-23}
\end{equation*}
$$

Equation 112-23 may be revericten as:

$$
\begin{equation*}
N=\frac{-3 \ddot{\theta}-2 \dot{\theta}-60 \theta-180 \operatorname{sign} \ddot{\theta}-180 \operatorname{sign} \dot{\theta}}{\ddot{\theta}} \tag{IMY-24}
\end{equation*}
$$

The cony urkmom, when (ItI-24) is applied to the $\dot{\theta}$ vs $\ddot{\theta}$ phase plane for given values of N, is θ. If some value of θ is assumed, the isoclines can be drawn. Figures IN-10a through 10 c show these isocline s for θ equal to zero, 10 , and 20 , respectively.
from kif. III-7, it anpears that, for a stable system, the maximum value of $\dot{\theta}$ when $\ddot{\theta}$ is zero is approximately 20 volts. By starting with $\dot{\theta}$:t -20 volts in Fig. InI-10b, and tracing a trajectory away from that mint in a reverse direction, a path results such that, for initial conditons foythere on the path and for θ remaining at a value of +10 volts, the trajectory would return to the starting point. For a positive velocity and a positive displacement, the displacement can only increase. Thus,

the wroncte winctory in tire mper hale of the $\dot{\theta}$ vs $\ddot{\theta}$ plane would fond tourgh mondedod by the isnclines in Fis. III-10c. For $\dot{\theta}$ equal to vera, " secomi predicted trajectory to arive at that point is drawn n Fig. Thf Inb. Using these two peedicted trajectories, a region of stable runs is predicted on Fiq. III-10b.

Ince -atin, tho $\dot{\theta} \ddot{\theta}$ hase plane was searched for stable and watabla regicns men θ, \cdots, volts. Eigures III-lla through ing
 af stable stambap ants is dram, the region of stable runs is enclosed. lape il '? shos antion of this regicn wich corresponds closely with the re,jon wich as oredicted.
iccording to the results poloted in Fig. III-12, when $\theta(0)$ is +i() woles no mositive values of $\dot{\theta}$ are pemitred if the system is co raman table. Thomorne: ic is concluded that the system cannot remain stable for a sten iomil groater than in voles by the reasoning which foliows. Since the sote is mot ceitically damed, for a step input of In wits thü … Ame overshoot. As θ reaches 10 volts a positive wacily in the overshoot Therofore, the system will go unstatle when $\theta \quad 10$ wote and the velocity is positive.
 tenjectory for a sten inmut af 10.1 volts. For this input, the system remeinen stobl: 43 sinos a recorder trace for the indicated

 he fone hy :n when betreen 10.1 and 10.2 volts. When the input is mace in fon intops, e. less than ten volts, and the system has

Cr

a

Cr
A
3.

 $($ vorts) -2

Lico town wtady state betveen each su"tessive step input the output Wil foll. to sny mongitude desired

are chosen to place the linear Monotint on the stability curse an unstable limit cycle results. An example of this type of run is shown in Ri: III l? for the corresponding point from Fig. III-1\%.
ractossins the cecdianck gains K_{a} and K_{t} should wider the stable rein of the $\dot{\theta}$ us $\ddot{\theta}$ phase plane since the M-point would spend a longer neriod of time in the stable region of the $B_{1}-B_{2}$ plane. ConverseTy, reducing the feedback gain; should reduce the stable region o These Loo modictions were found to be true. Figure III-19 shows an unstable mun remits when K_{t} is reduced to 0.13 whereas, with $K_{t}=1.0$, the strutine .ant was in the stable region. Figure TIT -20 shows two stable runs anon ${ }^{\prime \prime}$ are increased to 10 . Both of these runs were unstrobe with monty feedback gains.

Conto rn Iowa

It is conclucled that an accurate prediction of system performance cannot be mole using Mitrovic's method in conjunction with algebraic and Graphical methods when two coefficients contain non-linear factors. From the investimetons undertaken by this author, it appears that isocline then by itself mould provide the most accurate method of prediction. Hoverer, the hae of incline theory would require a large number of isccife blots, with accuracy being proportional to the number employed. An analysis would proceed in the following manner, given the initial conditions at the starting point. Using the following relationship,

$$
\Delta \ddot{\theta}=\frac{\dot{\theta}_{2}-\dot{\theta}_{1}}{\Delta t}
$$

and the values of $\ddot{\theta}^{\circ}, \dot{\theta}_{2}$, and $\dot{\theta}_{1}$ from a shore trajectory, compute Δt. Then, from

$\Delta \theta=\Delta t \frac{\dot{\theta}_{2}+\dot{\theta}_{1}}{2}$

 second short trajectory or the new ischia plot prom...an a

 third order equal on the this system.
 system with two non-1inearizies is by analog or digital an m, ar s sta ny Unfortunately, computer: methods can answer the question ot mat kay but not the more important question of why.

The dualism of the zeta equals ze:0 line on the $F_{1} p_{\text {p }}$, wain is the
 If one such duainsti: wace exists it stans entirely posset er at ounces might also be tow this factor aline would preclude the os e of Mirnvic's method to predict system performance when twa men-limea-ithes are involved.

CHAFTER IV

MITROVIC ${ }^{\circ}$ S METHOD APPLIED TO THE SWABLE CONTROL SYSTEM

In Chapter III, the control systcm was studied to ascertain stabilyty characteristics of the control system when the gain was high encugh to cause the uncompensated system to be inherently unstable. By reducing the gain, the system can be made inherently stable. From Eq. (int-5), which is repeated here as Eq. (IV-1), the parametric equation fot statility is:

$$
\begin{equation*}
B_{1} B_{2}=K_{,} \tag{1y-1}
\end{equation*}
$$

which may be rewritten as

$$
\begin{equation*}
\left(2+K N_{1} K_{t}\right)\left(3+K N_{2} K_{a}\right)=K . \tag{1~V-2}
\end{equation*}
$$

When K_{a} and k_{t} are zero, the maximum value which K may have fot a stable system is six, which is found from Eq. (IV-a). The characterisitc equàtion for the system becomes

$$
\begin{equation*}
S^{3}+B_{1} S^{2}+B_{2} s+6=0 \tag{IV-3}
\end{equation*}
$$

The solution of Eq . $(\mathbb{I V}-3)$ with the approptiate $\mathrm{B}_{1}-\mathrm{B}_{2}$ Mitrovic equation pair from Appendix B gives the desired parametric equations for the \mathbb{B}_{1} B_{2} plane:

$$
B_{1}=\cos _{n}^{2}+\frac{6(2 \xi)}{\omega_{n}}
$$

$$
\begin{equation*}
B_{2}=\frac{6}{\omega_{n}^{2}}+(2 \xi) \omega_{n} \tag{2v-4}
\end{equation*}
$$

The graphical solutions to Eqs. (IV-4) are shown in Fig。 IV-I。 Sinne \mathbb{B} cannot be less than two and \mathbb{F}_{2} cannot be less than three, the contesponding areas are ruled out in Fig. IV-1. Thus, the M-point must alnays be in the stable region and the control system is inherentiy stable. No dualism of the zeta equals zero line could be found by varying either initial conditions or the size of the step input.

It is desirable to predict an average M-point motion on the $\mathbb{B}_{1}-B_{2}$ plane. If such a prediction were possible, system pexformance could be accurately described. Two approaches to the prediction problem were atempted. The first approach was a linear approximation to a step input response. The second approach was to analyze the results of many runs to aseettan it some definite "pattern" of perfomance could be determined.

IINEAR APPROXIMATION METHOD.

The procedure in this method was to choose a step imput for the system and a starting M-point. It wes assumed throughout that the system could be regarded as a second order system and, therefore, that the values of zeta and natural frequency, ω_{n}, would govern system performance.

The step input size was chosen as ten volts. Initial values of 2.57 and $K_{a}=0.6$ were chosen to place the starting M-point at $\mathbb{B}_{1}=17.4$ and $B_{2}=6.6$. At this point, the value of zeta is 0.4 and $\omega_{n}=3.8$ xad/sec.

If θ were sinusoidal then $\dot{\theta}$ would $\operatorname{lag} \theta$ by 90 degrees and $\ddot{\theta}$ wowld lag $\dot{\theta}$ by 90 degrees. Therefore, if θ goes from its initial value of zero to the maximum value, $M_{p t}$ in time, t, then $\dot{\theta}$ would arrive at ite maximum value in $t / 2$ and $\ddot{\theta}$ would have a maximum in time $t / 4$.

Defining $\dot{\theta}_{\text {max }}$ as,

$$
\begin{equation*}
\dot{\theta}_{\max }=\frac{\theta_{\max }-\theta(0)}{t} \tag{-2-5}
\end{equation*}
$$

and $\ddot{\theta}_{\max }$ as

$$
\begin{equation*}
\ddot{\theta}_{\text {max }}=\frac{\dot{\theta}_{\text {max }}-\theta(0)}{\mathrm{t} / 2} \tag{IV-6}
\end{equation*}
$$

provides a basis for predicting M-point motion on the $E_{1}-B_{2}$ platie.
For zeta equal to 0.4 the maximum overshoot would be 1.25 . Thetefore, for a ten volt input, $\theta_{\max }$ is 12.5 volts. For \mathbb{C}_{n} equal to $3.8 \mathrm{rad} / \mathrm{sec}$, it equals 0.414 . Substituting these values in Eq. (IV -5) gives a $\dot{\theta}_{\text {max }}$ of 30.2 volts. Therefore, B_{1} min equals 2.22 . The values of ${ }_{\text {max }}$ is predict ed from Eq. (IV-6) as 146 volts, which corresponds to a B_{2} ruin of 3.206 . Thus, the M-point would be bounded by the straight dashed lines shown in Fig. IV-2. A revision to the first approximation is now made by choosing an average trajectory along the zeta equals 0.2 line and guessing at an average value of ω_{n} of $1.43 \mathrm{rad} / \mathrm{sec}$. from the corner value of W_{n}. Under these conditions, $M_{p t}$ is 1.5 and t equals 1.10 seconds. Using this value of $M_{p t}, \theta_{\max }$ is 15 volts and, from Eq. (IV-5), $\dot{\theta}_{\text {max }}$ is 13.6 volts and, therefore $\mathbb{E}_{1 \text { min }}$ is 2.52. The revised value of $\ddot{\theta}_{\text {max }}$ is compured from Eq. (IVY-6) as 24.3 volts, which corresponds to a B_{2} min of 4.23 . A second revision is now made based on the curved dash line of Fig. IV-2, using a value of zeta equals 0.3 and an $\omega_{\text {ir }}$ of 1.4 . From this data, M is $1.35, \dot{\theta}_{\text {mew }}$ is 12.0 voles and $\ddot{\theta}_{\text {max }}$ is 21.3 volts. Corresponding to $B_{1 m i n}=3.50$ and $B_{2 \text { min }}=3.85$. Since this second revision shows about the same M-porme motion (shown by the curved dashed line in Fig. IV-2) no further revisions are made.

To predict M-point motion after the first peaks are reached, it is assumed that in one complete cycle position, velocity, and acceleration

are all damped by a factor of $\epsilon^{-\xi}$. The following datat.en M point motion over any one cycle is made assuming that \mathbb{E}_{1} and \mathbb{B}, areven linear throughout the entire cycle and, therefore, have wanes af en ar

$$
B_{1}=2+\frac{18}{|8|}
$$

and

$$
B_{2}=3+\frac{18}{|2|}
$$

It is also assumed that velocity and acceleration have an average agnitube over one cycle equal to the average magnitude of a sine wove over cone cycle, io.,

$$
\dot{\theta}_{\text {ave }}=.636 \stackrel{\circ}{\theta}_{\text {peak }}
$$

and

$$
\ddot{\theta}_{a v e}=.636 \ddot{\theta}_{\text {peak }} .
$$

Therefore:

$$
\begin{aligned}
& B_{11 \text { ave }}=2+\frac{18}{.636\left|\theta_{1}\right|} \\
& B_{12 \text { ave }}=2+\frac{18}{.636\left|\theta_{2}\right|}
\end{aligned}
$$

and

$$
\Delta B_{1 \text { ave }}=B_{12 \text { ave }}-B_{11 \text { ave }}=\frac{18}{.636}\left[\frac{1}{\left|\theta_{0}\right|}-\frac{1}{|3|}\right]
$$

Since $\left|\dot{\theta}_{2}\right|=\left|\dot{\theta}_{1}\right| e^{-\xi}$, then

$$
\Delta_{1} \mathbb{B}_{1}=-\frac{18}{636}\left|\theta_{1}\right|\left[\frac{1-\varepsilon^{-\xi}}{\varepsilon^{\infty \xi}}\right]=\frac{28.4}{\mid 61} \delta(150.7)
$$

where δ is the damping factor.

Similarly,

$$
\begin{equation*}
\Delta B_{2}=\frac{28.4}{\left|\ddot{\theta}_{1}^{0}\right|} \delta . \tag{1}
\end{equation*}
$$

The δ factorsappearing in Eqs. (IV-7 and IV-8) are tabulated in Table IV-1. Using the values of δ from the table and Eqs. $(1 \gamma-\gamma$ and IV-8), a predicted average M-point trajectory is plotted in aig. IV-3.

ξ	TABLE TV-1	δ
0.0		0.00
0.1		0.105
0.2		0.222
0.3		0.352
0.4		0.493
0.5	0.640	
0.6		0.823
0.7		1.011
0.8		1.222
0.9		1.719

The results of the computations for average M-point tajectozy are shown in Table IV-2.

The revised predicted trajectory for a ten volt step input was based on peak magnitudes of velocity and acceleration. If a single point average value is used based on the average value of a sine wave over a complete

TABLE IV-2

B_{1}	B_{2}	$\|\dot{\theta}\|$ (roles $)$	\|of(volts)	δ	$\triangle B_{0}$	ΔB_{2}
3.50	3.50	12.0	36.0	. 105	. 25	. 08
3.75	3.58	10.3	31.0	. 110	. 30	. 10
4.05	3.68	8.8	26.5	. 140	. 45	.15
4.50	3.83	7.2	21.7	. 165	. 65	-280
5.15	4.05	5.7	17.1	.210	1.05	. 35
6.20	4.40	4.3	12.9	. 285	1.88	63
8.08	5.03	3.0	8.9	. 423	4.00	11.35
12.08	6.38	1.8	5.3	1.719	27.10	9.20
*17.40	**6,60					

```
* B}\mp@subsup{B}{1}{}\mathrm{ is linear for }\mp@subsup{B}{1}{}=17.4\mathrm{ .
**B}\mp@subsup{B}{2}{}\mathrm{ is linear for }\mp@subsup{B}{2}{}=6.6\mathrm{ .
```


cycle then $\dot{\theta}_{\text {ave }}=0.63 \dot{\theta}_{\max }$ and $\ddot{\theta}_{\text {ave }}=0.63 \ddot{\theta}_{\text {max }}$. For the treite step input, $\dot{\theta}_{\text {ave }}=7.55$ voits and $\ddot{\theta}_{\text {ave }}=13.4$ volts corresponding to aty a e $=4.39$ and a B_{2} ave $=4.13$. This point is shown as M_{1} ave 10 Eig Iv-3. According to the predictions developed hexe, if the first M_{1} ave is as shown in Fig. IV-3 then about three complete oscillations should take place before the awerage M-point arrives at the inear M-point.

Figure IV-S is an M-point trajectory for a 10 volt step infut, for which the $\dot{\theta}$ vs $\ddot{\theta}$ phase portrait is shown in Fig. IV 4 . There is only one complete oscillation in the actual system. Figures IV-6 through IV. 12 are phase portraits and M-point trajectories for step inputs of $20,30,40$, and 50 volts.

The average M-point trajectory does follow the general treme of the predicted average trajectory. However, the predicted trajectory allows for nearly twice the number of cycles as actually occur.

CONERUSHUNS.

Where are two primary sources for error in the prediceed M-port
trajevory. The first source is in predicting the initial adues of exority and acceleration and is due to the delay in position resparse after the step anput is applied. This results in erroneous values of the fitst veluricy and accelsration peak magnitudes.

Ins second source is in assuming a sinusoidal response whern the actual response is a danped sinusoid. The damped sinusoid has a yower average magnicute over a cycle than apure sinusoid and, thus, the predicted ramber of smplete osiliations are greater than the actual number

The black dinoman the system to be analyzed and the analog computer simulation of the system are shown in Fig．All．The closed loop transfer function for this system is

$$
\begin{equation*}
\frac{\theta_{0}(s)}{\theta_{i}(S)}=\frac{10 N}{s^{3}+3 S^{2}+2 S+10 N} \tag{1-1}
\end{equation*}
$$

Where N represents the instantaneous variable gain of the saturation nonlinerxity．By choosing the last two coefficients of the characterise－ tic emulation as the variable coefficients，the characteristic equation becomes

$$
\begin{equation*}
s^{3}+3 s^{2}+B_{1} s+B_{0}=0 \tag{A-2}
\end{equation*}
$$

From Appendix B，Mitrovic＇s equations for B_{0} and B_{1} are：

$$
\begin{equation*}
B_{0}=-\left[3 \omega_{n}^{2} \phi_{1}(\xi)+\omega_{n}^{3} \phi_{2}(\xi)\right] \tag{A-3}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1}=3 \omega_{n} \phi_{2}(\xi)+\omega_{n}^{2} \phi_{3}(\xi) \tag{A-4}
\end{equation*}
$$

Substituting the values of the \emptyset functions for $\xi=0$ from Appendix B in Res．（ $1-3$ ）and（ $A-4$ ）gives the parametric equations of the stability curve as

$$
\begin{equation*}
B_{0}=3 \omega_{n}^{2} \tag{A-5}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1}=\omega_{n}^{2} \tag{A-6}
\end{equation*}
$$

(a) Computer Simulation (Resistance in Megohms, Capacitance in μ Farads, $a=0.05$)

(b) Block Diagram
Contróu System with saturation in the error channel.

 $B!=2$ and $B_{n}=10 n$ where N has a moximun vatue of one Thus nn : : mint locus is specified on the Bo-B, plome.

The intersection of the apoint locus with the strility curve defines osingle wint viowe all the emations for ? and h_{l} are satisfled. At uis wint,

$$
B_{0}=3 \omega_{n}^{2}=10 \mathrm{~N}
$$

ant

$$
B_{1}=\omega_{n}^{z}=2 .
$$

The solution or $\omega_{n}=1.414$ radsec. Substituting this
 the Gaturation monembly is derinod as the int o of the output to the

$$
\begin{equation*}
\varepsilon=\frac{5}{N} \tag{A-9}
\end{equation*}
$$

The linenr system with a gin of 10 is unstable. Thus, if any disturnance ecurs in the system, the cutnut signal will begin to increase in sornitule. Timperare, the amenr signa? also increases in manniture. "on the arme chornel saturates the gein of the system is secronset. "Whe systen an is decreased, the system becomes more Wrive and arror sionil becins to decreasc. A decrease in the error sirnal incronses the system gain and the above process is repeated.

 stability curve. tha value of the nonlinear mein. A. and the magmotade of the error simal. \mathcal{E}, are therefore time averaged values.

Fir. A-3 is n mose portrait of this system obtained with an analog convuter sim?ation of the system. The radian frequency of $1.395 \mathrm{rad} /$ sec. agrees within one percent of the predicted value of $\omega_{n}=1.414 \mathrm{sad}$ sec. As previously stated, the magnitude of the error signal, E when the system is operating in a limit cycle can be predicted as 8,33 qoits. When the error channel saturates, the system will be driven with a ecrstrnt input of five volts. Therefore, the system should be driven at the same rate in either a nositive or a negative direction and the error signal channel should snend the same amount of time in positive saturation as it does in negntive saturation. The predicted magnitude of the errok simpl shoult then be an average value which is independent of the sagn of the error signal. On Fig. A-3 a vertical line was draton at $\varepsilon=-8.4$ volts. Then, for the limit cycle, the area marked "A" can be compareat to the ares marked " B " by counting the number of squares contained in each area. The tho areas are equal ind, therefore, the average magnitude of the erme signnl is $h_{\text {f }}$ volts wich arrees closely with the predicted volue.

Eif. A-4 shors the raphical solution to this nonlinear problem on the $B_{0}{ }^{B} B_{3}$ plane and the $B_{0}-B_{2}$ plane. The solution for the $B_{0}-$ B_{3} plane follows the same pattern as that for the $B_{0}-B_{1}$ plane. Solving this problem on the $B_{0}-B_{2}$ plane is, however, somewhat undue and is exnlained in the following paragraphs.

，																														
H＋	\＃	\square				H＋						－	\＃								＋					－		\＃		
				14																										
\# \#	\＃					＋+			STA	B		\checkmark C	URV	E		－ 0														
				＋									R																	
				12									－		＋	－		，			－		H		，	，				
																							－							
	\square			10																										
				10	0	N－						\square																		
					－																									
																										－				
				8																										
				B ${ }_{0}$	\square																									
								1																						
				6		ru＊	－ 4	$1+$																						
		－					0.6																			H				
－		－		4	－	－ c_{4}	$n=1$	2																						
				4																										
				－			w．	＋0					\＃																	
				2	－	Neor	2																							
																				－			－			－	＋			
											On	，	\cdots																	
				－							6	－	\＄	1		1			14									，		
																								\#	\#					
																												－		
																												，	，	
																	T					$p=0$								
											7							－				－				－				
				12									，																	
													－							－										
										4			－																	
				10																										
													，							－										
													，																	
	＋			0		$\mathrm{N}=0$	9.8																							
				${ }^{\circ}$				2																						
				＋				，																						
				6											cet															
							\％																							
							7	－																						
				4																						－	－			
				4			\square																							
													N		dus															
						1	\square																							
				2		\cdots			02																					
					\％																									
	－						\square							－							－	，								
															10		2		I											
									，	－	\cdots																			
		，	（1）				～＊＊	＋	，	＋	－	4na	＋																	
	F	A－4b	b．		－B	2	gra	aphi	cal	so	olut	tion																		
								－	т上บ																					
					\＃			－1	Hth	H7t	\＃－${ }^{\text {＋}}$			\＃1		\＃\＃\＃		\＃	－	，	\＃，									
		Figu	ure	A－4	．	Grap	phic	cal	so	lut	tion	n to	er	ror	r ch	chann	e1	sa	tu	rat	tio									
			W］	THI	\＃1		T］	－	T	＊						T		－	\＃											
							，															，								
		昷	朿	昳	－	－	－	＋	＋	＋	＋	＋	＋	年	＋	＋	＋	＋	＋	－	＋				＋		＋	＋		

$$
B_{0}=\frac{1}{\phi_{2}(\xi)}\left[2 \omega_{n} \phi_{1}(\xi)+\omega_{n}^{3} \phi_{1}(\xi)\right]
$$

and

$$
B_{2}=\frac{1}{\omega_{n}^{2} \phi_{2}(\xi)}\left[-2 \omega_{n} \phi_{1}(\xi)-\omega_{n}^{3} \phi_{3}(\xi)\right] .
$$

When the : ξ, functions are substituted in ERS. (A-10A and Anti they become

$$
B_{0}=\frac{1}{2 \xi}\left[2 \omega_{n}+\omega_{n}^{3}\right]
$$

and

$$
B_{2}=\frac{1}{\omega_{n}^{2}(2 \xi)}\left[2 \omega_{n}-\omega_{n}^{3}\left(1-4 \xi^{2}\right)\right] .
$$

The anhstitution at $\xi=$ an Fifo $(A-12)$ and (A-13) results in singutariLies in both mantras Rut, for $\xi=0, s=j \omega_{n}$. Substivarisetis muntity for in in (boz) yields

$$
\begin{equation*}
-j \omega_{n}^{3}-B_{2} \omega_{n}^{2}+2 j \omega_{n}+B_{0}=0 . \tag{array}
\end{equation*}
$$

Remixing the real and imaginary parts of Eq. (A-14) to $2=240$ independently produces the following equation pair.

$$
\begin{align*}
j \omega_{n}\left(2-\omega_{n}^{2}\right) & =0 \tag{A-5}\\
B_{0}-B_{2} \omega_{n}^{2} & =0 .
\end{align*}
$$

The solution to Fa. (i-15) after first dividing out i ω_{n} is $\omega_{n}^{2}=$ Thus, $\omega_{n}=3.414$ radysec and, from Eq. $(A-16), B_{0}=2 B_{2}$ Sin .

3 Som the characteristic equation, then $B_{0}=6$ and $N=0.6$. The ${ }^{3}() \quad-B_{2}$ curves are then plotted and a graphical solution is obtained Which is consistent with the solutions from the $B_{0}-B_{1}$ and $B_{0}-F_{3}$ planes

CASE II. SATURATion in the velocity feedback channel.
The block diagram of the system to be analyzed and the analog computer simulation of the system are shown in Fig. A-5. The closed lon transfer function for this system is

$$
\begin{equation*}
\frac{\theta_{0}(s)}{\theta_{i}(s)}=\frac{30}{s^{4}+7 s^{3}+14 s^{2}+(8+120 N) s+30} \tag{A-17}
\end{equation*}
$$

Where N represents the variable gain of the nonlinearity. As in Case I, the last two coefficients of the characteristic equation are chosen
as the variable coefficients. The characteristic equation is

$$
\begin{equation*}
s^{4}+7 s^{3}+14 s^{2}+B_{1} s+B_{0}=0 \tag{A-18}
\end{equation*}
$$

where

$$
\begin{equation*}
B_{0}=30, \tag{A-19}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1}=8+120 \mathrm{~N} . \tag{A-20}
\end{equation*}
$$

From Appendix B, Mitrovic's equations for B_{0} and E_{1} are:

$$
\begin{equation*}
B_{0}=-\left[14 \omega_{n}^{2} \phi_{1}(\xi)+7 \omega_{n}^{3} \phi_{2}(\xi)+\omega_{n}^{4} \phi_{3}(\xi)\right] \tag{A-20}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{1}=14 \omega_{n} \phi_{2}(\xi)+7 \omega_{n}^{2} \phi_{3}(\xi)+\omega_{n}^{3} \phi_{4}(\xi) \tag{2}
\end{equation*}
$$

Figure A-5

 and (A-22) provides the following equations for the stability curves.

$$
\begin{align*}
& B_{0}=14 \omega_{n}^{2}-\omega_{n}^{4} \tag{A-23}\\
& B_{1}=7 \omega_{n}^{2}
\end{align*}
$$

The stability curve and M-point locus are plotted on the $\mathrm{B}_{0}-\mathrm{E}_{1}$ plata on Fig. A-6.

The graphical solution to this problem reveals both a stable ard an unstable limit cycle. The gain of the linear system $(N=1.0)$ is high enough so that the lincar system is unstable. Any disturbance that occuts in the system produces an oscillatory state. When the veloci"y feedback sicnal saturates the reedback chamel, the value of the nonmnear gain is reduced. The M-point moves to the left toward the stability curve. If the avarage M-point moves to the left of (or inside) the stability watue the system is damped. As the oseillations decrease in magnatude the nonlinear gain increases end the M-point returns to the stablyty uwte。 Eventually a dynmic equilibrium is reached and a stable limit ayele tesults, At the intersections of the M-point locus and the stability curve En. (A-19) and Fo. (A-23) are equivalent and, therefore,

$$
\begin{equation*}
\omega_{n}^{4}-14 \omega_{n}^{2}+30=0 \tag{A-25}
\end{equation*}
$$

The solutions to Eq. (A-25) are:

$$
\begin{equation*}
\omega_{n}=1.63 \mathrm{rad} / \mathrm{sec} \tag{A-26}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{n}=3.37 \mathrm{rad} / \mathrm{sec} \tag{A-2}
\end{equation*}
$$

At each intersection of the M-point lowes Egs A-A..... $A-\ldots$
are equipalent and

$$
120 N=7 \omega_{n}^{2}-8
$$

Por the stable lumit cycit, using the value of ω_{n} from Eq. fA-s. the solution of Ery (A-28) is N equals 0.596 . For the unstable ladt a do En. (A-26) applies and the solution to Eq. (A-28) 1 s (4) equals ina 4 The unstable limit cycle results when the magnitude at : an elo i= feedback signal is large enough eo produce saturation surt that is is equal to or less than 0,0874 . This conditron will exise fat any agraintude of $\dot{\theta}$ equal to or greater than $5.73 \mathrm{rad} / \mathrm{sec}$, a walwe dert d tom the rollowing, equarion:

$$
N=\frac{3}{6|\dot{\theta}|}<0.0874
$$

For ray $\dot{\theta}$ whose magnitude satisfies Eq. $(A-29)_{g}$ the syswem is . . stable and the oscillations begin to grow. This increase in the ragratude of $\dot{\theta}$ further reatuces the value of N and the oscillations
 operation at moth lamit cycles.

It is timphasized here that the operation of the system at : whene limit cyele is non in a small region about the intersection the stability curve ant the Mroint locus. As the value of $\dot{\theta}$ passes thacough ze:o in elther diraction, the value of N is oregsince the velupty itaz bock charnel is rot saturated. Thus, the instantaneous wallus if A cause the system to operate through a long portion of the $M-\mathrm{c}_{\mathrm{a}} \mathrm{ct}$. The ungerble limit cyele, for example, would produce walues if s, bu tween eight and 128.
(

CASY IFY SALUGATIOM IH THE ACCERERATION PEEDRACK CHANAFE.

The blogk Rlegrom of the system to be analyzed ard the anambg comporer simultion of the system are shown in Fig. A-8. Thas. locp tranfer function of the system was found from which the ir ata ix istic equation is:

$$
s^{4}+7 s^{3}+(14+10 N) s^{2}+8 s+20=0
$$

were.

$$
\begin{equation*}
B_{1}=8 \tag{3}
\end{equation*}
$$

and,

$$
B_{2}=14+10 \mathrm{~N} .
$$

The $B_{1} \mathrm{~B}_{2}$ Mitrovic equation par are selected frum Apt...tion
 for $\xi=0$, the parametric equations for the stability curve art:

$$
\begin{align*}
& B_{1}=7 \omega_{n}^{2} \tag{A-33}\\
& B_{2}=\frac{20}{\omega_{n}^{2}} . \tag{-4-54}
\end{align*}
$$

At the 1 atersection of the M-point locus and the stabilyty cume Egs. $(A-31)$ and $(A-33)$ are equivalent. Therefore, $\omega_{n}=1.069$ and this value of $\omega_{n}, \mathbb{B}_{2}$ equals 18.64 , from Eq. $(A-34)$, ant A equate 0.464 , from Eq. (A-32).

Whe graphical solution to this problem is showm it Fig. Amy. If the mogmitude of the accelerntion signal is large enough surt that w is less thm 0.464 , then the system is unstable and oseldyations it crenge in magnitude. This increases the peak magnitude of the buedecation simad revnces the magnitude of $N y$ and causes the sybern ic ome more unstible. Therefore the system will never attart a siatort said For small signal magritudes of acceleration the systum antrates nest

(5)
the point whene i as unity. In this region the system has some tumping ratio. ξ, grester than zero. As the oscillations are dereeased in mognitude the value of N approaches unity. In this mode of opetationt the oseillations will eventually die out and the system and ll opewate lil a Iinear, stable state. Fig. A-10 is a phase portrait of this system which illustrates the stable mode of operation, the unstable limit arele, and the unstable mode of operation.

			It																										
	-		\#			-				-	+					-													
	-	-		-									1																
	\#		\#	,									+																
	-			28												-		-											
						,					(-			-		,											
				-							-		-																
	\cdots							-			1		-	- ${ }^{\text {a }}$		1		\#							,				
	-			26				-	3n*	\% ${ }^{\circ}$	\#		\square	标		根		\#											
	$\#$			24		-					7							\square							:				
				24.										-70															
											\bigcirc																		
	$\# 1$			22							\cdots			$\mathrm{N}=0,1$															
	\#			$\underline{1}$		+	-	+ ${ }^{1}$						- +	-	\#													
										n=																			
		\cdots		20										1-a					,								H		
				20								\bigcirc		- 0									L				3		
				-										-									Le		-		\%		
				-		-								$N=0.46$				$y=$		464									
				18		,								+	-			ci.	069	ra		sec							
				-																									
				,	,							1		\cdots	-			,		,		-			,				
				16				-						9.2								-							
				+	-									$\mathrm{hb}^{1,2} 2$															
			2																										
				14																									
										1				-om															
															-		*						AB			URV			
				$1{ }^{1}$	\#			-										\cdots						$0=0$					
				12																									
				\square																									
				-				1																					
				to				1	\square																				
				1	-			1	\square															2		3			"
		-		-	-			\%			locu																		
																,	,	-		,			-						
				8																									
				-																			,						
-	\square			\square					,				-	\#									-						
-	-			6																			-	-			-		
	,			-							-	+	,	-				-					1	\%			-		
													-					,		-									
				4										-		-		-		1			+						
-				-																									
				-								-	-	\square		-		+											
				,											\square														
								-													16								
														- 8				\#						+					
-									,					,			(1)	1		17)	-	-	1)					
		Fig	ure	A-9			rap	phica	a1 s	solut	tio	n \ddagger	or	acc	ele	rat	tion	fe	eedb	bac	k	ch	ann	nel			ati		
																								-	11				
		-										,																	
				\%												*													
		\|.		+				+	\#					+									+						

Figure A-10. \mathcal{E} vs \mathcal{E} phase portrait. Acceleration feedback saturation.
(1) $B_{5}=B_{2}$

$$
\begin{aligned}
& B_{5}=-\left[A_{3} \omega_{n}^{2} \phi_{2}(\xi)+A_{3} \omega_{n}^{3} \phi_{2}(\xi)+\cdots+A_{n} \omega_{n}^{n} q_{n}(\xi)\right] \\
& B_{1}=A_{2} \omega_{n} \phi_{2}(\xi)+A_{3} \omega_{n}^{2} \phi_{3}(\xi)+\cdots+A_{n} \omega_{n}^{n-1} \phi_{n}(\xi)
\end{aligned}
$$

(2) $B,-B_{2}$

$$
\begin{aligned}
& B_{2}=-\frac{2}{\omega_{n}^{2} \omega_{n}}\left[A_{1} \omega_{n} \omega_{1}(g)+A_{3} \omega_{n}^{3} \phi_{3}(\xi)+A_{4} \omega_{n}^{4} A_{8}(\eta)+\cdots+A_{n} \omega_{n}^{n} \phi_{n}(\xi)\right]
\end{aligned}
$$

(3) $B_{0}-E_{3}$

$$
\begin{aligned}
& B_{0}=-\frac{1}{\sigma_{3}(\xi)}\left[A_{1} \omega_{n} \phi_{2}(\xi)+A_{2} \omega_{n}^{2} \phi_{1}(\xi)=A_{4} \omega_{n}^{4} \phi_{1}(\xi)=\cdots-A_{n} i_{n}^{n} \phi_{n-3}(\xi)\right] \\
& B_{3}=-\frac{\xi}{\omega_{n} /(\xi)}\left[A_{1} \omega_{n} \omega_{1}(\xi)+A_{2} \omega_{n}^{2} \phi_{2}(\xi)+A_{4} \omega_{n}^{4} \phi_{8}(\xi)+\cdots \sin A_{n} \omega_{n}^{n} \phi_{n}(\xi)\right]
\end{aligned}
$$

(1) $B_{0}-B_{4}$

$$
\begin{aligned}
& B_{s}=\frac{1}{\sigma_{a}(\xi)}\left[A_{1} \omega_{n} \phi_{3}(\xi)+A_{2} \omega_{n}^{2} \phi_{2}(\xi)+A_{3} \omega_{n}^{3} \phi_{1}(\xi)-A_{2} \omega_{n}^{5} \phi_{3}(\xi)=\cdots-A_{n} \omega_{n}^{n} \phi_{n-6}(\xi)\right]
\end{aligned}
$$

(5) $P-B$,

$$
\begin{aligned}
& E_{2}=-\frac{1}{L_{n}}\left[-A_{0} \phi_{2}(\xi)+A_{3} \omega_{n}^{3} \phi_{1}(\xi)+A_{4} \omega_{n}^{4} x_{2}(\xi)+\cdots \cdots A_{n} \omega_{n}^{n} \phi_{n-2}()^{\prime}\right]
\end{aligned}
$$

(6) $B_{1}-B_{3}$

$$
\begin{aligned}
& B_{1}=\frac{1}{\omega_{n} \phi_{2}(\xi)}\left[A_{0} \phi_{1}(\xi)-A_{2} \omega_{n}^{2} \phi_{1}(\xi)+A_{4} \omega_{n}^{4} \phi_{i}(\xi)+\cdots+A_{n} \omega_{n}^{n} \phi\right. \\
& B_{3}=-\frac{1}{\omega_{n}^{3} h_{1}(\xi)}\left[A_{0}+A_{2} \omega_{n}^{2} \phi_{1}(\xi)+A_{1} \omega_{n}^{4} \phi_{3}(\xi)+\cdots+A_{n} \omega_{n}^{n} \phi_{n-1}(\xi)\right]
\end{aligned}
$$

(7) $B_{1}-B_{0}$

$$
\begin{aligned}
& B_{1}=\frac{1}{\omega_{n} \phi_{3}(\xi)}\left[-A_{0}\left(\phi_{9}(\xi)-A_{2} \omega_{n}^{2} \phi_{2}(\xi)-A_{3} \omega_{n}^{3} \phi_{1}(\xi)+A_{5} \omega_{n}^{5} \phi_{1}(\xi)+\cdots+A_{n}\left(\omega_{n}^{n} \phi_{n-4}(\xi)\right]\right.\right. \\
& B_{\phi}=-\frac{1}{\omega_{n}^{4} \phi_{3}(\xi)}\left[A_{0}+A_{2} \omega_{n}^{2} \phi_{1}(\xi)+A_{3} \omega_{n}^{3} \phi_{2}(\xi)+A_{5} \omega_{n}^{5} \phi_{4}(\xi)+\cdots+A_{n} \omega_{n}^{n} \phi_{n-1}(\xi)\right]
\end{aligned}
$$

(8) $B_{2}-B_{3}$

$$
\begin{aligned}
& B_{2}=-\frac{1}{\omega_{n}^{2}}\left[-A_{0} \phi_{3}(\xi)-A_{1} \omega_{n} \phi_{2}(\xi)+A_{4} \omega_{n}^{4} \phi_{1}(\xi)+A_{5} \omega_{n}^{5}\left(\phi_{2}(\xi)+\cdots+A_{n} \omega_{n}^{n} \phi_{n-3}(\xi)\right]\right. \\
& B_{3}=\frac{1}{\omega_{n}^{3}}\left[-A_{6} \phi_{2}(\xi)-A_{1} \omega_{n} \phi_{2}(\xi)+A_{1} \omega_{n}^{4} \phi_{2}(\xi)+\cdots \infty A_{n} \omega_{n}^{n} \phi_{\cdots}(\xi)\right]
\end{aligned}
$$

(9) $B_{2}-B_{4}$

$$
\begin{aligned}
& B_{8}=\frac{1}{\omega_{n}^{2} \omega_{2}(\xi)}\left[-A_{0} \phi_{1}(\xi)-A_{1} \omega_{n}\left(\phi_{3}(\xi)-A_{3} \omega_{n}^{3} \phi_{1}(\xi) \phi_{0} A_{5} \omega_{n}^{5} \phi_{1}(\xi)+\cdots+A_{n} \omega_{n}^{n} A_{n-1}(\xi)\right]\right. \\
& B_{4}=-\frac{1}{\omega_{n}^{2} \phi_{2}(\xi)}\left[-A_{0} \phi_{2}(\xi)-A_{1} \omega_{n} \phi_{2}(\xi)+A_{5} \omega_{n}^{3} \phi_{1}(\xi)+A_{5} \omega_{n}^{5} \phi_{3}(\xi)+\cdots+A_{n} \omega_{n}^{n} \phi_{n, n}(\xi)\right]
\end{aligned}
$$

$(10) \quad B_{3}-B_{4}$

$$
\begin{aligned}
& B_{3}=\frac{1}{\omega_{n}^{2} \phi_{2}(\xi)}\left[A_{5} \phi_{1}(\xi)-A_{1} \omega_{n} \phi_{3}(\xi)-A_{2} \omega_{n}^{2} \phi_{2}(\xi)+A_{5}\left(\omega_{r}^{5}(\xi)(\xi)+\cdots \cdot+A_{n} \omega_{n}^{n} \phi_{n-q}(\xi)\right]\right. \\
& B_{4}=\frac{1}{\omega_{n}^{\alpha} \phi_{1}(\xi)}\left[-A_{0}\left(\phi_{3}(\xi)-A_{2} \omega_{n} \phi_{2}(\xi)-A_{2} \omega_{n}^{2} \phi_{1}(\xi)+A_{5} \omega_{n}^{2} \phi_{2}(\xi)+\cdots+A_{n} \omega_{n}^{n} \phi_{n-3}(\xi)\right]\right.
\end{aligned}
$$

TAELE IE. Equations for the $\emptyset_{k}(\xi)$ functions app ar ag

$$
\begin{aligned}
& \phi_{0}(\xi)=0 \\
& \phi_{1}(\xi)=-1 \\
& \phi_{2}(\xi)=2 \xi \\
& \phi_{3}(\xi)=1-4 \xi^{2} \\
& \phi_{4}(\xi)=-4 \xi+8 \xi^{3} \\
& \phi_{5}(\xi)=-1+12 \xi^{2}-16 \xi^{4} \\
& \phi_{6}(\xi)=6 \xi-32 \xi^{3}+32 \xi^{5} \\
& \phi_{7}(\xi)=1-24 \xi^{2}+80 \xi^{4}-64 \xi^{6} \\
& \vdots \\
& \phi_{k}(\xi)=-\left[2 \xi \phi_{k-1}(\xi)+\phi_{k-2}(\xi)\right] \quad \text { for } k \geqslant 2
\end{aligned}
$$

1. Meteove Musan Graphical Amalysis and Synthesis of Conerol gystem。 Tart 1 - Theory and inalysis. iff Irasu*:
 Sevtron): 476-407.
2. Mitrowic, Dusan. Graphical Analysis and Synthesis of Exuztak Control Systems. Part II - Synthesis. Ibid. 48y-496.

 Eectbonk (ontrol Systams. McGraw-Hil1. 1962.
3. Ihaler, G. 5. and Ohtay To, Mitrovic's Method ~ Some Eurameral Techniques. United States Naval Fostgraduate Schonl. Reseat ku paper, No. 39, January 1964.
 in Preducting imm Cycles in Eeedback Contral Systems ath ioc
 .1ny 1961.

